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Abstract
Conventional genetic theories have failed to explain why cancer (1) is not found in new-

borns and thus not heritable; (2) develops only years to decades after ‘initiation’ by carcinogens;

(3) is caused by non-mutagenic carcinogens; (4) is chromosomally and phenotypically ‘unsta-

ble’; (5) carries cancer-specific aneuploidies; (6) evolves polygenic phenotypes; (7) nonselective

phenotypes such as multidrug resistance, metastasis or affinity for non-native sites and ‘immor-

tality’ that is not necessary for tumorigenesis; (8) contains no carcinogenic mutations. We

propose instead that cancer is a chromosomal disease: Accordingly, carcinogens initiate chromo-

somal evolutions via unspecific aneuploidies. By unbalancing thousands of genes aneuploidy

corrupts teams of proteins that segregate, synthesize and repair chromosomes. Aneuploidy is

thus a steady source of karyotypic–phenotypic variations from which, in classical Darwinian

terms, selection of cancer-specific aneuploidies encourages the evolution and subsequent malig-

nant ‘progressions’ of cancer cells. The rates of these variations are proportional to the degrees

of aneuploidy, and can exceed conventional mutation by 4–7 orders of magnitude. This makes

cancer cells new cell ‘species’ with distinct, but unstable karyotypes, rather than mutant cells.

The cancer-specific aneuploidies generate complex, malignant phenotypes, through the abnor-

mal dosages of the thousands of genes, just as trisomy 21 generates Down syndrome. Thus can-

cer is a chromosomal rather than a genetic disease. The chromosomal theory explains (1)

nonheritability of cancer, because aneuploidy is not heritable; (2) long ‘neoplastic latencies’ by

the low probability of evolving competitive new species; (3) nonselective phenotypes via genes

hitchhiking on selective chromosomes, and (4) ‘immortality’, because chromosomal variations

neutralize negative mutations and adapt to inhibitory conditions much faster than conventional

mutation. Based on this article a similar one, entitled ‘The chromosomal basis of cancer’, has

since been published by us in Cellular Oncology 2005;27:293–318.

Copyright © 2006 S. Karger AG, Basel

Despite over 100 years of cancer research, the cause of cancer is still a

matter of debate [1–26]. We propose here that the problem of cancer is still
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unsolved, because this debate has been monopolized by conventional genetic

theories, which hold that cancer is a ‘genetic disease’ [27–35]. But these genetic

theories cannot explain any of the following properties of carcinogenesis:

Cancer Is Not Heritable
The best news about cancer is that we and other animals are all born

cancer-free and typically acquire cancer, if at all, only at advanced age [34,

36–40]. This bias of cancer for old age is exponential, increasing the cancer risk

300-fold with age, from near-zero rates in newborns and adolescents to rates of

1 in 3 in the last third of a human or animal life span (fig. 1). 

In view of the prevailing gene-based cancer theory, however, this age bias is

paradoxical. This theory holds that cancer is caused by clonal expansion of one

single cell that has accumulated about four to seven complementary mutations

during the lifetime of a patient [1, 12, 34, 38, 41, 42]. If this theory is correct,

cancer should be common in newborns. For example, a baby, which inherits

3 colon cancer mutations from his mother and 2 from his father, out of the pre-

sumably 6 that are thought to cause colon cancer [1, 34], should develop cancer

at a very young age from just one more spontaneous mutation in any one of the

billions of its colon cells. Indeed, many hypothetical cancer-causing mutations,

including those thought to cause colon cancer, are heritable in transgenic mice

(Appendix) and also in humans. According to Vogelstein and Kinzler [43], “one
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  �1 0.24
   1–4 0.22
   5–9 0.12
10–14 0.13
15–19 0.21
20–24 0.31
25–29 0.44
30–34 0.59
35–39 0.88
40–44 1.48
45–49 2.70
50–54 5.37
55–59 9.47
60–64 15.41
65–69 22.64
70–74 28.29
75–79 31.23
80–84 30.83
�85 29.77
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Fig. 1. Age-specific incidence of invasive cancers of males in the United States in

2001. The dominant contributors to the total number of invasive cancers are solid tumors.

The growth is approximately exponential until about age 70 and then levels off. Data for the

figure, shown in the table at the right, are from the National Program of Cancer Registries at

http://www.cdc.gov/cancer/npcr/index.htm.
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of the cardinal principles of modern cancer research is that the same genes cause

both inherited and sporadic (noninherited) forms of the same tumors”. 

But there is no colon cancer in newborns (fig. 1). Thus, cancer is somati-

cally generated and not a heritable disease.

Long Neoplastic Latencies
Experimental or accidental carcinogenesis, and the age bias, demonstrate

that cancer is a late product of a gradual evolution of somatic cells that may be

‘initiated’ either by carcinogens or spontaneously [1, 10, 38, 40, 44, 45]. Once

initiated, this evolution is autonomous but very slow, generating cancer cells

only after lengthy and uneventful ‘neoplastic latencies’ [40, 45]. These latencies

last many months to years in carcinogen-treated rodents and decades in acciden-

tally exposed humans [40, 45–48]. For example, (1) the solid cancers, which

developed in human survivors only 20 years after the explosion of atomic bombs

in Japan in 1945 [38]; (2) the breast cancers, which developed only 15 years after

treatments of tuberculosis with X-rays in the US in the 1950s [49], and (3) the

lung cancers, which developed in workers of a mustard gas factory only 30 years

after it was closed in Japan in 1945 [50]. The exponential increase of the sponta-

neous cancer risk of humans with age even implies neoplastic latencies of up to

50 years from a near zero-risk at birth to a one in three risk in the last three

decades of a human lifespan of about 80 years (fig. 1). The primary cancer cells

that appear after these lengthy pre-neoplastic evolutions continue to progress

independently within individuals tumors to form evermore ‘polymorphic’ [51]

and malignant cancers with evermore exotic karyotypes and phenotypes [45].

These long latencies of carcinogenesis, however, are incompatible with

the immediate effects of conventional mutation [2, 31, 35, 52]. It is for this rea-

son that Cairns wrote in Cancer: Science and Society: ‘The conspicuous fea-

ture of most forms of carcinogenesis is the long period that elapses between

initial application of the carcinogen and the time the first cancers appear.

Clearly, we cannot claim to know what turns a cell into a cancer cell until we

understand why the time course of carcinogenesis is almost always so extraor-

dinarily long’ [38].

Non-Mutagenic Carcinogens Cause Cancer
Both mutagenic and non-mutagenic carcinogens cause cancer. Examples of

non-mutagenic carcinogens are asbestos, tar, mineral oils, naphthalene, polycyclic

aromatic hydrocarbons, butter yellow, urethane, dioxin, hormones, metal ions

such as Ni, Cd, Cr, As, as well as spindle blockers such as vincristine and col-

cemid, extranuclear radiation and solid plastic or metal implants (Appendix).

Conventional genetic theories, however, fail to explain carcinogenesis by non-

mutagenic carcinogens.
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Karyotype-Phenotype Variations at Rates that Are 
Orders Higher than Mutation
During the neoplastic phase of carcinogenesis, cancer cells gain or lose chro-

mosomes or segments of chromosomes (fig. 2) and change phenotypes at rates

that far exceed those at which genotypes and phenotypes are changed by conven-

tional mutation [53–55]. For example, highly aneuploid cancer cells become drug

resistant at rates of up to 10�3 per cell generation [53, 54, 56–58] or become

metastatic at ‘high rates’ [59, 60]. As a result of this inherent chromosomal insta-

bility most cancers are enormously heterogeneous populations of nonclonal and

partially clonal, or sub-clonal cells [13, 61]. Thus, cells from the same cancer dif-

fer from each other in ‘bewildering’ phenotypic and chromosomal variations [62]

and in mutations – even though most cancers are derived from a common, pri-

mary cancer cell and thus have clonal origins [38, 45, 51, 56, 61, 63–67].

By contrast, the karyotypes of normal cells are stable despite mutational

or developmental phenotype variations [31, 34, 52, 68]. And phenotypic varia-

tion of normal cells by conventional gene mutation cells is limited to 10�7 per

cell generation for dominant genes and to 10�14 for pairs of recessive genes in

all species [6, 47, 52, 57, 68, 69]. Even the mutation rates of most cancers are

not higher than those of normal cells [6, 19, 20, 47, 66, 70–75]. Thus, pheno-

typic variation in cancer cells can be four to eleven orders faster than conven-

tional mutation.

Cancer-Specific Aneuploidies
Despite the karyotypic instability and heterogeneity of cancer cells partially

specific or nonrandom aneuploidies have been found in cancers since in the late

1960s [61, 62, 76–87]. Since the 1990s, many more nonrandom aneuploidies

have been detected in cancers by the use of comparative genomic hybridization,

rather than by identifying specific aneusomies cytogenetically [61, 88–96]. The

term aneusomy is used for a specific, aneuploid chromosome. Specific aneu-

ploidies have even been linked with specific stages of carcinogenesis and with

specific phenotypes of cancers such as: (1) Distinct stages of neoplastic trans-

formation in human [62, 89, 95–99] and in animal carcinogenesis [84]; (2) inva-

siveness [97, 98, 100]; (3) metastasis [101–106]; (4) drug-resistance [53, 69,

107]; (5) transplantability to foreign hosts [108]; (6) distinct cellular morpholo-

gies [109]; (7) abnormal metabolism [62, 110], and (8) cancer-specific receptors

for viruses [62, 109].

Cancer-specific, nonrandom aneuploidies, however, are inconsistent with

the conventional mutational theories of cancer. In fact they are a direct chal-

lenge of the mutation theory, because specific aneusomies have the potential to

generate cancer-specific functions (Appendix). The Down syndrome-specific

functions of trisomy 21 are a confirmed model [111–114].
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Fig. 2. Karyotypes of clonal cultures of human colon cancer and Chinese hamster cell

lines. a Karyotypes of clonal cultures of the near-diploid human colon cancer cell line HCT

116 (modal chromosome number � 45) and of the hyper-diploid human colon cancer cell

line SW480 (modal chromosome number � 57). The karyotype of only 1 out of 30 cells of

the clonal culture of the near-diploid HCT 116 line was non-clonal, containing an extra, par-

tially deleted chromosome 12, termed marker M4 12� (bold italic number). By contrast, 13

(bold italic numbers) out of 19 cells of the clonal culture of the hyper-diploid SW480 line had

nonclonal karyotypes. All 13 nonclonal karyotypes differed from the modal karyotype of this

line in the numbers of one or more chromosomes. Four of these 13 nonclonal cells also con-

tained new structurally altered chromosomes, labeled M16 to 21 (bold italic numbers).

Chromosomal constituents of the marker (hybrid) chromosomes are indicated following their
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designation, e.g. M1 2/12 for a hybrid of chromosomes 2 and 12. b Karyotypes of clonal

cultures of the near-diploid, hyper-diploid and near-triploid Chinese hamster cell lines B69–1

(modal chromosome number � 21), D1 (modal chromosome number � 29) and B2 (modal

chromosome number � 35). No numbers signal normal chromosome numbers. It can be seen

that only 3 of 20 cells of the near-diploid line B69–1 had nonclonal karyotypes. Each of these

included one new structurally altered chromosome, termed ac101 and ac102. One of these

three nonclonal karyotypes also had undergone tetraploidization. By contrast, there were no

two identical cells in the clonal cultures derived from the hyper-diploid and near-triploid

Chinese hamster cells. Nevertheless, the degrees of both numerical and structural variations

were much higher in near-triploid than in hyper-diploid Chinese hamster cells.
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Cancers Have Complex Phenotypes
The complexity of most cancer-specific phenotypes far exceeds that of

phenotypes generated by conventional mutation. For example, the kind of drug-

resistance that is acquired by most cancer cells exposed to a single cytotoxic drug

is more complex than just resistance against the drug used to induce it. It protects

not only against the toxicity of the challenging drug, but also against many other

chemically unrelated drugs [56, 58, 115]. Therefore, this phenotype has been

termed ‘multidrug resistance’. Thus, drug resistance must be polygenic. The same

is likely to be true for the other cancer-specific phenotypes such as grossly altered

metabolism, invasiveness, metastasis, and immortality [40, 45], because all of

these phenotypes correlate with altered expressions of thousands of genes [34, 87,

116–118] and with highly abnormal concentrations of thousands of normal pro-

teins [16, 40, 51, 119]. Moreover, in highly aneuploid cancer cells the number of

centrosomes is increased up to 5-fold – from a normal of two to around ten – and

at the same time their structures are often altered [120–123].

The high genetic complexities of most cancer-specific phenotypes, how-

ever, are incompatible with accumulations of large numbers of gene mutations

generated at conventional rates during the limited live spans of humans and ani-

mals. Indeed, it is virtually impossible that the up to 5-fold increased numbers

of centrosomes that are observed in highly aneuploid cancer cells [17, 120, 121,

124], would be the result of mutations that increase the numbers of the 350 dif-

ferent proteins that make up centrosomes [125].

Nonselective Phenotypes of Cancer Cells
Cancer-specific phenotypes can be divided into two classes: Those, which

are selective, because they advance carcinogenesis by conferring growth

advantages to cancer cells such as invasiveness, grossly altered metabolism

and high adaptability via high genomic variability [40, 45], and those, which

are not selective for growth [73, 126]. The nonselective, cancer-specific phe-

notypes include metastasis, drug resistance and immortality. Metastasis is the

ability to grow at a site away from the primary tumor. Therefore, it is not selec-

tive at the site of its origin [126]. Likewise, drug resistance is not a selective

advantage for natural carcinogenesis in the absence of chemotherapy. Yet, a

high percentage of cancers is a priori or intrinsically drug-resistant [127, 128].

Moreover, the majority of the drug resistances associated with multidrug resis-

tance offer no selective advantages against the drug that induced it. Even

immortality is not a selective advantage for carcinogenesis, because many

types of human cells can grow over 50 generations according to the Hayflick

limit [129], and thus many more generations than are necessary to generate a

lethal cancer. Consider that 50 cell generations produce from one single cell a

cellular mass equivalent of 10 humans with 1014 cells each [10]. Nonselective
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phenotypes, however, are entirely inconsistent with conventional gene mutation-

selection mechanisms.

No Carcinogenic Genes in Cancer
Numerous gene mutations have been found in cancer cells since the 1980s

[1, 29, 42, 130–133], and the prevailing genetic theories of cancer postulate that

these mutations are carcinogenic [29, 30, 33, 34, 42].

But none of the mutations found in cancers are cancer-specific [1, 134],

and in cases where this information is available many, perhaps most, mutations

are nonclonal [8, 134, 135] and are not detectably expressed in human cancer

cells in vivo [8, 116, 136, 137]. Despite enormous efforts in the last 25 years, no

mutant gene and no combination of mutant genes from cancer cells has been

found that converts diploid human or animal cells into cancer cells [4, 5, 12, 13,

24, 73, 138]. Moreover, mouse strains with artificially implanted, hypothetical

cancer genes, or with artificially deleted tumor suppressor genes have survived

many generations in laboratories with either the same or slightly higher cancer

risks than other laboratory mice (Appendix) [8, 24, 73].

In view of this, Vogelstein and Kinzler [1] closed a very influential review of

the mutation theory in 1993 as follows: ‘The genetics of cancer forces us to re-

examine our simple notions of causality, such as those embodied in Koch’s postu-

lates: How does one come to grips with words like “necessary’’ and “sufficient’’

when more than one mutation is required to produce a phenotype and when that

phenotype can be produced by different mutant genes in various combinations?’

These and other inconsistencies between carcinogenesis and established genetic

theories are the reasons why it is still debated, whether mutations or aneuploidies

or epigenetic alterations cause cancer [1, 3–8, 10–14, 16–22, 24–26, 42].

A New, Chromosomal Evolution Theory of Carcinogenesis

In an effort to resolve the many discrepancies between carcinogenesis and

conventional genetic theories listed above, we present here a new, chromosomal

evolution theory of carcinogenesis. Our theory is based on: (1) the ubiquity of

aneuploidy in cancer [61, 62, 65, 78, 139]; (2) our own data that aneuploidy

changes the numbers and structures of chromosomes and phenotypes automati-

cally much faster than and independent of mutation [53–55, 137, 140]; (3) an ear-

lier chromosomal theory of cancer proposed by Boveri and von Hansemann over

100 years ago [141–143]. This theory, however, was abandoned in the 1950s and

1960s in favor of mutation, because instead of the expected cancer-specific aneu-

ploidy, karyotypic heterogeneity was found in most cancers by the methods

developed at that time [62, 144, 145]. Ever since, ‘aneuploidy and other forms of
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chromosomal abnormality’ of cancer cells [56] are generally interpreted as ‘sec-

ondary’ events [24, 56, 61, 62, 146] – secondary to presumably primary gene

mutations [15, 32, 64, 75, 147–153]; (4) cancer-specific aneuploidies discovered

since the late 1960s by many laboratories including ours, particularly by compar-

ative genomic hybridizations [84]. These discoveries, however, are not appreci-

ated as chromosomal causes of cancer because of the prevailing genetic theories.

According to our new chromosomal evolution theory, carcinogenesis is

the result of the following chain of events: (1) carcinogens and spontaneous

mitotic errors induce unspecific aneuploidies; (2) aneuploidy corrupts teams of

proteins that segregate, synthesize and repair chromosomes. Aneuploidy is thus

a steady source of karyotypic-phenotypic variations from which, in classical

Darwinian terms, selection of cancer-specific aneuploidies encourages the evo-

lution and spontaneous ‘progressions’ of the malignant phenotypes of neo-

plastic cells. The rates of these variations are proportional to the degrees of

aneuploidy; (3) this chromosomal evolution makes cancer cells new, inherently

unstable cell ‘species’ with distinct, but unstable karyotypes, rather than mutant

cells. Owing to this inherent chromosomal instability, cancers are uncertain

combinations of random and of relatively specific or ‘nonrandom’ aneuploi-

dies; (4) the cancer-specific aneuploidies generate complex, malignant pheno-

types via abnormal dosages of thousands of genes. Down syndrome is a model

for how aneuploidy generates complex, abnormal phenotypes, and (5) thus can-

cer is a chromosomal rather than a genetic disease.

Below, we offer a brief explanation of how aneuploidy generates new phe-

notypes, independent of mutation. According to this mechanism variations of

chromosomes have the same effects on the phenotypes of cells as variations of

the assembly lines of a car factory on the phenotypes of an automobile. If

changes are made that do not alter the balance of components, e.g. moving the

engine from the front to the rear, new, competitive car models are generated.

Indeed, motor companies change their assembly lines to create a new car model.

Likewise, phylogenesis generates new species by changing the numbers and

structures of the chromosomes of existing species [154].

If unbalanced, i.e. aneuploid, changes are made, abnormal and defective

products must be expected. The human trisomy 21, which causes Down syndrome,

is a classic non-neoplastic example [113, 114]. Although trisomy 21 is only

a tiny aneuploidy compared to that of most cancers, it generates 71 Down-

specific phenotypes [111, 112]. Likewise, experimentally induced, congenital

aneuploidies generate numerous abnormal phenotypes in drosophila, plants and

mice, independent of gene mutation [155–157]. Thus, the complex aneuploi-

dies of cancer cells can be expected to generate numerous new phenotypes.

By contrast, the power of changing the phenotypes of the cell by gene

mutation is comparable to employing a few defective or overactive workers on
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the assembly lines of a car factory. Neither of these variables will generate a

new car model, except possibly to produce either a defective car or no car at all,

if an assembly line comes to a stop [158]. For example, none of the 1.42 million

point mutations that distinguish any two humans [159] have generated a new

human species, nor have they even been sufficient to cause cancer in newborns.

Instead of being controlled by hypothetical oncogenes or tumor suppressor

genes, alias ‘gate keepers and caretakers’ [75, 160], or being de-controlled by

the corresponding mutations, most phenotypes of normal and cancer cells are

controlled ‘democratically’ by hundreds of kinetically linked proteins [161].

Such cooperative assembly lines of gene products are buffered against muta-

tions of single genes by the assembly line principle [161, 162]. According to

this principle, unchanging supplies and demands of numerous unmutated genes

from upstream and downstream of biochemical assembly lines buffer mutations

in two ways. They automatically raise substrate concentrations upstream of

slow-working, mutationally compromised genes and restrict by normal supplies

of substrates mutationally activated genes [161, 163]. This is indeed the princi-

ple that buffers cells of all multicellular organisms against all but knock out

mutations that occur during their long lifetimes.

Thus aneuploidization, upsetting the balance of thousands of normal

genes, rather than mutation of a few genes, is necessary to generate the complex

and dominant phenotypes of cancer cells.

In sum, the chromosomal evolution theory provides a coherent explanation

of carcinogenesis that is independent of mutation, and that can explain each of

the many idiosyncratic features of carcinogenesis that are paradoxical in view

of the mutation theory. However, the chromosomal theory remains challenged

by competing claims of the prevailing genetic theories of cancer. In the follow-

ing we take up this challenge.

Testing Specific Predictions of the Chromosomal Theory against
Competing Claims by Genetic Theories of Cancer

According to the prevailing genetic theories of cancer, ‘carcinogens are muta-

gens’ [164] initiating carcinogenesis by mutation, and ‘initiated’ cells then evolve

into cancer cells via poorly defined sets of four to seven complementary mutations

[1, 29, 34, 35, 38, 41, 42, 52, 134, 165]. Since these claims of the prevailing

genetic theories of cancer have monopolized cancer research in the last decades,

we have tested the most distinctive predictions of the chromosomal evolution the-

ory: (1) carcinogens initiate carcinogenesis by aneuploidisation; (2) aneuploidy is

inherently variable and thus sufficient to catalyze the evolution of cancer-specific

chromosome patterns, and (3) carcinogenesis is independent of somatic mutation.
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Carcinogens Function as Aneuploidogens
This prediction has been confirmed previously by others [4, 10, 44, 67, 70,

73, 158, 166–168] including Boveri, who first demonstrated that X-rays, several

chemicals, heat and physical stress generate aneuploidy, but failed to observe can-

cer in experimental animals [142, 143]. However, since these studies did not

establish pre-neoplastic aneuploidy as the cause of carcinogenesis [6, 7, 24, 25],

we have recently retested the question whether carcinogens cause aneuploidy

experimentally, using mutagenic [84] and nonmutagenic carcinogens [169, 170],

and by reviewing the literature [4, 10, 25, 73, 158]. These tests have shown that

mutagenic carcinogens generate aneuploidy either by breaking and rearranging

chromosomal DNA or by chromosome nondysjunction owing to alterations of the

spindle apparatus. By contrast, nonmutagenic carcinogens would induce aneu-

ploidy primarily via de-polymerization of the proteins of the spindle apparatus or

even via physical interference with mitosis as by asbestos [80]. Polycyclic aro-

matic hydrocarbons and vincristine are examples of carcinogens that cause aneu-

ploidy by depolymerizing protein polymers of the spindle apparatus [70, 158].

Moreover, carcinogens, particularly radiations and mutagenic chemical

carcinogens, induce aneuploidy without delay, and thus long before cancer

[170–174], as postulated by the chromosomal theory. Most importantly, our

own studies have shown that among the many effects that carcinogens have on

cells [40], aneuploidy is the one that consistently segregates with subsequent

carcinogenesis [84, 170].

A series of recent studies, aiming at the definition of mutations that might

‘initiate’ carcinogenesis, have instead all pointed to chromosomal initiation [67,

73, 174]. Based on the dosage of a carcinogen delivered to cell cultures, the per-

centages of ‘initiated’ cells were found to be �1,000-fold larger than expected

for the target gene [73]. Markers identified for the initiation of carcinogenesis

were either aneuploidy or chromosomal destabilization or immortalization or

‘delayed reproductive death’ [67] or transformation of cells in vitro [73]. Since

an average human chromosome contains about 1,500 genes – 35,000 genes

divided by 23 chromosomes [154] – it follows that the chromosome is the target

for the initiation of carcinogenesis [73]. We conclude that carcinogens function

as aneuploidogens as postulated by the chromosomal theory.

Aneuploidy Is Inherently Variable and Thus Sufficient to Catalyze the
Evolution of Cancer-Specific Chromosome Patterns
We have tested this critical prediction of the chromosomal evolution the-

ory, by measuring the rates at which karyotypes of cancer cells vary sponta-

neously per cell generation. For this purpose clonal cultures of cancer cells with

different degrees of aneuploidy were prepared and the fraction of nonclonal

karyotypes in these cultures was determined. The rates of karyotype alteration
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per cell generation are then calculated by dividing these fractions by the number

of generations of the clonal culture.

Using this method we found karyotypic variation at rates of near 10�2 per

generation in the hyper-diploid – modal chromosome number � 57 – human

colon cancer cell line SW480 [53]. This rate was calculated from the data shown

in figure 2a as follows: 6 of the 19 karyotypes were identical and are thus consid-

ered the ‘stemline’ [62] or modal karyotype of this line. But, 13 of 19 ‘clonal’

SW480 cells had non-clonal karyotypes, differing from the predominant ‘stem-

line’ in numerical and structural aneusomies, which are identified by bold italic

numbers in figure 2a. Since the clone was about 23 generations old by the time it

was analyzed, having grown from a single cell to about 107, the average rate of

karyotype variation per cell per generation is about 3% (13:19:23). Indeed, this is

a minimal estimate, because many random chromosomal variations are not

viable. A comparison of the karyotypes of an SW480 cell with a normal human

foreskin cell is shown in figure 3. The karyotypes were prepared from metaphase

chromosomes hybridized in situ with color-coded chromosome-specific DNA

probes, as described by us recently [53].

Even higher rates of over 1 chromosomal variation per cell generation were

observed in the hyper-diploid and near-triploid Chinese hamster cell lines D1

(modal chromosome number � 29) and B2 (modal chromosome number � 35)

[55, 140] (fig. 2b). The normal chromosome number of the Chinese hamster is

22. Not even two of these highly aneuploid Chinese hamster cells were the same

[55]. This means that the rates of karyotype variations per cell generation were at

least 4% (100%: 23), but probably higher, because most random variations are

likely to be lost as fast as they are generated. However, in the case of the near-

triploid B2 line the rates of structural chromosomal rearrangements were at least

100% per generation, because each metaphase contained several unique struc-

tural chromosome alterations, numbered ac201-ac296 in figure 2b.

As predicted by the chromosomal theory, much lower rates of karyo-

type variations were observed at low degrees of aneuploidy, namely in the

near-diploid human colon cancer cell line HCT 116 (modal chromosome num-

ber � 45) and in the near-diploid Chinese hamster line B69–1 (modal chromo-

some number � 23) [55, 140]. Only 1 of 30 clonal HCT 116 cells contained a

new, structurally altered chromosome, again identified by a bold italic number

in figure 2a, which corresponds to a rate of only 0.15% karyotypic variations

per cell generation. Not even one purely numerical variation was detected in

30 metaphases. Likewise only 3 of 20 clonal B69–1 cells had nonclonal karyo-

types (fig. 2b), which corresponds to a rate of 0.65% karyotypic variations

per cell generation.

It follows that the degrees of both numerical and structural chromosomal

instability of human and Chinese hamster cells are proportional to the degrees
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of aneuploidy, as postulated by the chromosomal theory. Others have recently

described very similar correlations between chromosomal instability and

degrees of aneuploidy in human cancer cells including some of those used by us

[175–177].

However, the fact that chromosomes are destabilized in proportion to the

degree of aneuploidy could also be explained by a series of independent muta-

tions. But, this mutation argument is unlikely, because it is very unlikely that two

inherently different kinds of mutations, those that alter the structures and those

that alter numbers of chromosomes, would both be equally proportional to the

degrees of aneuploidy in all cancers, considering that specific mutations are very

rare, even in cancer cells (Appendix). In other words, this argument predicts

some cancers with high numerical and no or low structural instability, and others

with the opposite distribution, but so far no such cancers have been described.

In sum, the conclusion can be drawn that the inherent variability of aneu-

ploidy is the cause of the chromosomal and phenotypic instabilities of cancer

cells and the resulting cellular heterogeneities of cancer, as predicted by the

Fig. 3. Metaphase chromosomes of a normal human foreskin cell and of a cell from the

human colon cancer cell line SW480. Cytogenetically intact chromosomes are identified by

numbers. The group labelled ‘mar’ (for marker chromosome) shows structurally abnormal

chromosomes, which are either rearranged intra-chromosomally or inter-chromosomally to

form various hybrid chromosomes. The numbers above these marker chromosomes identify

the chromosomal origins of hybrid chromosomes in their relative order or the basis of intra-

chromosomal alterations, e.g. 3� for an amplification of chromosome 3. A comparison of the

two karyotypes shows that the cancer cells differ from the normal cell in numerous numerical

and structural chromosomal alterations or aneusomies. See online version for color.
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chromosomal theory. This aneuploidy-specific, chromosomal uncertainty prin-

ciple had become the nemesis of the Boveri-von Hansemann theory in the

1950s and 1960s.

Carcinogenesis Independent of Somatic Mutation
Cancer coincides with aneuploidy as well as with mutations [6, 7, 10, 13,

24]. In the words of a recent review in Science, ‘Cancer cells are chock-full of

mutations and chromosomal abnormalities’ [6]. Therefore, it can be argued that

spontaneous and carcinogen-induced aneuploidization is sufficient for the initi-

ation and autocatalytic evolution of carcinogenesis, as we did here. But, it could

also be argued that the initial aneuploidization and its subsequent evolution

depend on somatic mutations, as others have done recently [13, 14, 26,

150–153, 178].

However, the following 4 arguments indicate that carcinogenesis (of nor-

mal cells in normal organisms) is independent of somatic mutation [25]. In fact,

cancer cells, via their specific aneuploidy, are even protected against the nega-

tive effects of mutation: (1) Initiation of carcinogenesis by aneuploidy, gener-

ated by mutagenic carcinogens fragmenting or eliminating chromosomes, is

about 35,000 times more likely than by aneuploidy, generated by mutation of a

specific mammalian ‘aneuploidy-gene’ [6]. This is because mammals contain

about 35,000 genes, and thus only 1 in 35,000 specific mutations would gener-

ate an ‘aneuploidy gene’ [25, 154], but any mutation leading to a chromosome

break or rearrangement generates aneuploidy. Using nonmutagenic carcinogens

to generate initiating aneuploidy via the spindle apparatus is in fact infinitely

more efficient than via the nontarget gene. Thus, initiation of carcinogenesis is

independent of somatic mutation. (2) Generating the complex, cancer-specific

phenotypes by chromosomal variation is about 1,500 times more efficient than

by mutation. Indeed, it would be almost impossible to generate the complex,

polygenic phenotypes of cancer cells in a lifetime of a cancer patient by mutat-

ing many genes, considering the complexity of cancer-specific phenotypes and

the low rates of spontaneous mutation in normal and most cancer cells

(Appendix). By contrast, chromosomal variation is a mechanism that automati-

cally alters the dosages and expressions of thousands of genes. Therefore, ane-

uploidization is infinitely more efficient in generating the complex phenotypes

of cancer cells than mutation. Thus, carcinogenesis is independent of somatic

mutation in generating complex, cancer-specific phenotypes. (3) The high rates

of cancer-specific karyotype-phenotype variations are irreconcilable with the

low rates of conventional mutation. New, cancer-specific phenotypes appear or

old ones disappear in highly aneuploid cancer cells at rates of up to 10�3 per

cell generation, which is four to eleven orders faster than conventional gene

mutation (Appendix). Thus phenotype variation in cancer cells is independent
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of mutation. (4) The relevance of somatic mutations for carcinogenesis is uncer-

tain. Cancer-specific aneuploidy can generate gene mutations by the same

mechanism that varies the structures of chromosomes. In addition, aneuploidy

renders DNA synthesis error-prone by unbalancing nucleotide pools [179].

Thus, the simplest explanation of the many mutations of cancer cells would be

that these mutations are consequences of aneuploidy and thus not necessary for

carcinogenesis. This hypothesis explains why the mutations found in cancer

cells are frequently nonclonal in cancers [8, 135], and why they do not trans-

form normal cells to cancer cells and do not breach the livelihood of transgenic

mice (Appendix). Indeed, cancer cells are immortal, because frequent, aneu-

ploidy-catalyzed karyotypic variations neutralize all potentially negative muta-

tions at much higher rates than they can be generated.

We conclude that carcinogenesis is independent of somatic mutation,

because aneuploidy is much more likely to be generated and varied at the chro-

mosomal level than by mutation. In response to this it has been argued that can-

cers associated with heritable cancer-disposition syndromes prove that

carcinogenesis is dependent on mutation. Examples are the retinoblastoma,

xeroderma, Bloom syndrome, and mosaic variegated aneuploidy syndromes

[32, 34, 180, 181]. However, these heritable – rather than somatic – mutations

are not direct causes of cancer. Instead they initiate carcinogenesis by aneu-

ploidization at much higher rates than it would occur in normal cells by sponta-

neous or carcinogen-induced aneuploidization [181–183]. According to the

chromosomal theory these mutations are genetic equivalents of carcinogens

that induce aneuploidy at high rates. This view is supported by the presence of

aneuploidy in such patients prior to carcinogenesis, as for example in mosaic

variegated aneuploidy patients [183, 184], Bloom patients [182] and xeroderma

patients [185], and by the presence of aneuploidy in the cancers of patients with

retinoblastoma [186–189], mosaic variegated aneuploidy [183, 184], xero-

derma [185, 190] and Bloom patients [182].

We conclude that the abnormally high rates of carcinogenesis in heritable

cancer disposition syndromes are dependent on abnormally high rates of

aneuploidizations that are generated by these heritable genes. Thus carcinogen-

esis encouraged by certain heritable mutations confirms and extends the chro-

mosomal theory of carcinogenesis, but does not show that carcinogenesis in

normal cells depends on conventional mutation.

Explanatory Value of the Chromosomal Theory of Cancer

In table 1, we have summarized how the chromosomal cancer theory

explains each of the idiosyncratic features of carcinogenesis that are paradoxical
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in terms of conventional genetic theories. In the following we offer further com-

mentary on items 1, 2, 5, 6 and 7 listed in table 1, because they are not suffi-

ciently explained by the table and the preceding arguments.

Cancer Is Not Heritable
The chromosomal theory predicts no cancer in newborns, because aneu-

ploidy is not heritable. Aneuploidies are not heritable, because they corrupt

embryogenic developmental programs [113, 114], which is usually fatal [157,

191] as originally shown by Boveri [142]. Only some very minor congenital ane-

uploidies, such as Down syndrome and syndromes based on abnormal numbers

of sex chromosomes, are sometimes viable, but only at the cost of severe physio-

logical abnormalities and of no or very low fertility [31, 65, 68, 192]. Thus, onto-

genesis is nature’s checkpoint for normal karyotypes. The postnatal exponential

increase of the cancer risk with age would then reflect the gradual accumulation

of non- or preneoplastic aneuploidy with age, multiplied by the relatively slow,

nonselective replication of aneuploid, preneoplastic cells (figs 1, 2).

However, it is as yet unclear, why after initiating doses of carcinogens the

neoplastic latencies are very species-dependent, namely much shorter in

rodents than in humans [1, 46, 47, 193–195]. It is also unclear, why the increase

of the cancer risk is proportional to the lifespan of an animal, i.e. is very low for

decades in humans (fig. 1), but only for months in rodents [38, 47]. Still, this is

unlikely to be due to species-specific mutation rates, because the rates of con-

ventional mutations are highly conserved in all species [52, 68]. However, the

Table 1. Features of carcinogenesis

Genetic paradox Chromosomal solution

1 Cancer not heritable aneuploidy is not heritable

2 Long neoplastic latencies autocatalyzed evolution of cancer-specific 

aneusomies

3 Non-mutagenic carcinogens carcinogens function as aneuploidogens

4 High rates of karyotype-phenotype aneuploidy catalyses karyotype-phenotype

variations and the origin of variations, including resistance to

‘immortality’ otherwise lethal conditions, at high rates

5 Cancer-specific aneuploidies cancer-specific aneuploidies generate 

cancer phenotypes

6 Complex phenotypes cancer-specific aneuploidies alter dosages

and functions of thousands of genes

7 Nonselective phenotypes nonselective genes hitchhiking with

selective, cancer-specific aneusomies

8 No carcinogenic genes in cancer cancer is caused by specific aneuploidies



significantly higher chromosomal instability of aneuploid rodent cells com-

pared to equally aneuploid human cells, shown here in figure 2, may offer a dif-

ferent explanation, namely that chromosomal stability of normal and cancer

cells is different in different species.

Long Neoplastic Latencies
The chromosomal evolution theory predicts that carcinogenesis is initially

very slow, because preneoplastic cells have no growth advantages compared to

normal cells and are typically only little aneuploid (fig. 4). Therefore, they would

not form large clonal populations that would increase the probability of further

evolutions. The non-clonality of the pre-neoplastic aneuploidies also hides any

abnormal phenotypes of pre-neoplastic cells, because phenotypes of single cells

are hard to recognize. By contrast, neoplastic ‘progression’ of established cancer

cells is predicted to be faster than during the pre-neoplastic phase for two reasons:

(1) Neoplastic cells, through their selective phenotypes, will generate large

‘clonal’ populations with high probabilities of further variations. (2) The gener-

ally high degrees of most cancer-specific aneuploidies catalyze high rates of

chromosomal variations, compared to those of preneoplastic cells (fig. 4).

The chromosomal theory also predicts a certain endpoint of chromosomal

evolutions in carcinogenesis. This endpoint would be an equilibrium of aneu-

ploidizations, which is reached once a cancer has maximized cellular variability

and adaptability [73] and ‘optimized its genome’ for essential metabolic functions

[196]. According to the chromosomal theory maximal chromosomal variability

would correspond to near or above triploid chromosome numbers (�3n) [13, 73,

137]. Near triploid aneuploidy offers an optimal average redundancy of one spare

for each normal chromosome pair, and thus sufficient redundancy to compensate

for any losses or genetic mutations of a given chromosome [73]. Accordingly, it is

the karyotype of most malignant cancer cells [10, 62, 65, 73, 146, 158, 178, 197].

High Rates of Karyotype-Phenotype Variations and the 
Origin of Immortality
The chromosomal theory attributes the high rates of karyotype-phenotype

variations of cancer cells to the inherent variability of aneuploidy. On this basis,

the chromosomal theory also explains the notorious immortality of cancer cells as

already described in 1972 by the cytogeneticist Koller [62]: ‘It seems that malig-

nant growth is composed of competing clones of cells with different and continu-

ously changing genotypes, conferring the tumor with an adaptable plasticity

against the environment. The bewildering karyotypic patterns reveal the multi-

potentiality of the neoplastic cell; while normal cells and tissues age and die,

through their inherent variability, tumor cells proliferate and survive.’ Thus, can-

cers are immortal, because subspecies from within the zoos of their polyphyletic
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Fig. 4. Carcinogenesis via chromosomal evolutions. According to this mechanism car-

cinogenesis is initiated by unspecific aneuploidies induced either by carcinogens or sponta-

neously. Aneuploidy then alters the karyotype automatically at rates that are proportional to

the degree of aneuploidy, because it corrupts teams of proteins that segregate, synthesize and

repair chromosomes. Aneuploidy is thus a steady source of chromosomal variations from

which, in classical Darwinian terms, selection would encourage the evolution and subse-

quent progressions of neoplastic cell ‘species’ with cancer-specific aneusomies. This evolu-

tion would be slow in the preneoplastic phase, because preneoplastic cells have no growth

advantages over normal cells and because the degree of preneoplastic aneuploidy is typically

low. By comparison the rate of karyotype variations of most cancer cells would be fast,

because cancer cells form large populations by outgrowing normal cells and because the

degrees of cancer-specific aneuploidy are typically high. Any kind of cancer could have as

many specific aneusomies as there are chromosomes involved in the differentiation of its

precursor cell in addition to random aneusomies. Thus cancer-specific phenotypes, such as

invasiveness, metastasis, and drug-resistance, are generated by the abnormal dosages of

thousands of normal genes. Since aneuploidy is inherently unstable, cancer-specific pheno-

types, such as drug-resistance, can be reversible or convertible to other specific phenotypes

at the same rates at which they are generated. The chromosomal model predicts the heteroge-

neous phenotypes and karyotypes of cancers as consequences of independent evolutions of

the inherently unstable cancer cells. Since aneuploidy causes dedifferentiation, the model

further predicts that the degrees of malignancy of cancer cells are proportional to the degrees

of aneuploidy.
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cell populations [110] – species are defined by karyotypes – survive conditions

that are lethal to the mortal majority of the cells, as for example toxic drugs.

Cancer-Specific Aneuploidies
The presence of cancer-specific or nonrandom aneuploidies is directly pre-

dicted by and thus correlative proof for the chromosomal theory in terms of

Koch’s first postulate. Functional proof that cancer-specific aneuploidy gener-

ates malignancy could be derived from evidence that the degree of malignancy

is proportional to the degree of aneuploidy. Indeed, numerous correlations have

confirmed the principle that the degree of malignancy of cancer cells is propor-

tional to their degree of aneuploidy since the 1930s [10, 45, 62–64, 97,

198–204]. Moreover, other studies have shown that maximal malignancy is,

indeed, achieved at maximally stable, near-triploid or hypertriploid aneuploidy

[65, 178, 197, 205, 206]. The parallel evolutions of aneuploidy and malignancy

in cancer cells are thus functional proof for the chromosomal evolution theory

of cancer in terms of Koch’s third postulate.

Complex Phenotypes
Conventional genetic theories cannot explain the generation of the poly-

genic cancer-specific phenotypes such as multidrug resistance, polymorphism,

metastasis to non-native sites, and transplantability to heterologous species

[108] based on conventional rates of mutation and selection in the lifespan of a

human or animal. By contrast, the chromosomal theory of cancer explains the

complexity of cancer-specific phenotypes by the complexicity of the genetic

units that are varied, namely chromosomes with thousands of genes.

Accordingly, the complex phenotypes of cancer cells have recently been shown

to correlate with over- and underexpressions of thousands of genes [34, 87,

116–118, 136]. Likewise, cancer cells over- and underproduce thousands of

normal proteins [16, 40, 51, 119].

Nonselective Phenotypes`
Conventional genetic theories explain the evolution of cancer cells by

cancer-specific mutations and Darwinian selections. But this mechanism cannot

explain the nonselective phenotypes of cancer cells, such as metastasis, drug

resistance and ‘immortality’. By contrast, the chromosomal theory of carcino-

genesis attributes nonselective phenotypes such as metastasis and intrinsic multi-

drug resistance to nonselective genes hitchhiking with selective, cancer-causing

aneusomies, because they are all located on the same chromosomes. The same

would be true for that part of acquired multidrug-resistance, which is not directed

against the selective drug that induced it. The nonselective phenotype immortal-

ity has been explained above.
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Conclusions

We conclude that the chromosomal theory provides a coherent explanation

of carcinogenesis and can resolve all features of carcinogenesis that are para-

doxical in terms of the prevailing genetic theories of cancer. In addition, the

theory stands out for making new, clinically testable predictions, as for example

the prediction that cancer could be detected prior to malignancy via pre-

neoplastic aneuploidy and that chemotherapy could be based on the presence or

absence of resistance-specific aneusomies. Thus, if confirmed, the chromoso-

mal theory should become beneficial for cancer research and therapy.

Appendix

The Achilles Heels of the Mutation-Cancer Theory
The currently prevailing cancer theory postulates that cancer is caused by clonal expan-

sion of one single cell that has accumulated about four to seven complementary mutations

during the lifetime of a patient [1, 12, 34, 38, 41, 42]. However, the mutation theory is hard

to reconcile with the following list of facts.

1 Nonmutagenic Carcinogens. Contrary to the mutation hypothesis, many carcinogens are

not mutagens, including some of the most potent ones. Examples are asbestos, tar, min-

eral oils, naphthalene, polycyclic aromatic hydrocarbons, butter yellow, urethane, dioxin,

hormones, metal ions such as Ni, Cd, Cr, As, spindle blockers such as vincristine and col-

cemid, extranuclear radiation and solid plastic or metal implants [40, 44, 67, 70, 73, 158,

166, 168].

2 No Transforming Genes. Despite years of efforts no genes or combinations of genes from

cancers have been shown to transform normal cells to cancer cells [4, 5, 138] or mice car-

rying such genes in their germ lines into polyclonal tumors [1, 24, 56]. Accordingly,

many, presumably cancer-specific mutations are not detectably expressed in cancer cells

[8, 116, 136, 137].

3 Dependence of Cancer on Unrealistically High Rates of Mutation. The mutation hypothe-

sis explains the exponential increase of the cancer risk with age by the low probability of

four to seven specific mutations [1, 41, 42]. However, in order to maintain the integrity of

the genome, spontaneous mutation rates in all species are naturally restricted to about 10�7

per dominant gene and to about 10�14 per recessive gene per cell generation [6, 47, 52, 57,

68]. Thus, based on these conserved mutation rates cancer via four to seven mutations

would not even exist [10]. For example, based on just 4 specific dominant mutations can-

cer would occur only once in 1012 human lifetimes. This is calculated as follows: Since the

spontaneous mutation rate per specific, dominant gene is about 10�7, it takes 1028 cells to

generate one human cell with 4 specific mutations. The expected cancer rate per human

lifetime of 1 in 1012 is then obtained by dividing 1028 by 1016. 1016 is the number of cells

that correspond to an average human lifetime [10, 38]. Thus, in order to explain the current

cancer risk of Americans and Europeans of about 1 in 3 lifetimes [39] (fig. 1), the muta-

tion hypothesis has to assume mutation rates, which are 103 [(103)4 � 1012] times higher

than in conventional mutation.



Duesberg/Li/Fabarius/Hehlmann 36

4 No Explanation for the Long ‘Neoplastic Latency’ in Carcinogenesis Induced by a
Critical Dose of Carcinogen. The mutation hypothesis has no answer to the question why,

after a critical dose of carcinogen, carcinogenesis would only occur after exceedingly

long ‘neoplastic latencies’ of years to decades [1].

5 Dependence of Phenotype Alterations in Cancers on Unrealistically High Rates of Mutation.
The mutation hypothesis has to assume mutation rates of up to 10�3 per cell generation to

explain the frequent, spontaneous variation of phenotypes in highly aneuploid cancer cells.

Examples are the ‘high rates’, compared to mutation, at which some cancers generate

metastatic cells [59, 60], or generate drug-resistant variants [53, 54, 56, 58]. But the mutation

rates of most cancers are not higher than those of normal cells [6, 19, 20, 47, 66, 70–74].

6 Heritable Cancer Genes, but no Heritable Cancer. The four to seven gene mutation hypoth-

esis predicts that subsets of cancer causing mutations should be heritable. Indeed, proponents

of the mutation hypothesis have demonstrated that several of the six mutations thought to

cause colon cancer [1] can be introduced into the germ line of mice without breaching the

viability of these animals. According to one study, animals with one of these mutations,

namely ras, were found ‘without detectable phenotypic abnormalities’ [207]. Another study

reports, “surprisingly, homozygosity for the Apc1638T mutation is compatible with postna-

tal life” [208]. Thus subsets of colon cancer genes are heritable. Therefore, colon cancer

should be common in newborns, which are clonal for inherited subsets of these six mutations

(like transgenic mice). But there is no colon cancer in newborns [38, 39].
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